
Principles of automated zone design methods 

 

Hello, I’m David Martin and in this series of short videos I’m explaining some of those 

methods that we can use for automated zone design.  And in this video were going to look at 

some of the principles behind automated zone design procedures.  

 

We are going to think a little about building blocks that we can use, the nature of design 

criteria and the way in which iterative calculations can be used to achieve an optimal design. 

The problem that are trying to solve in automated zone design is to find a means of achieving 

a set of zones that meet specific design criteria. For example, we might want zones that are 

not too big, not too small, are sensible shapes on the map, or which have similar populations 

and so inevitably this will always be a trade-off between a number of competing objectives. 

Faced with a problem of that kind, a natural human inclination is to draw lines on the map in 

order to subdivide a larger area. An alternative approach is to put together many small areas 

as if completing a jigsaw, and the computational approaches which I’m going to describe 

here are much closer to that second analogy.  

 

So, the procedures which I’m illustrating here are examples of methods which can be traced 

back to the Automated Zoning Procedure introduced by Stan Openshaw in 1977.  What we 

are doing here is taking a set of small building block zones and aggregating them into groups 

which from now on I’m going to call tracts.  What we would do is to create an initial random 

aggregation of these tracts a bit like putting together a small area of a jigsaw, in in a 

provisional sense and then compute a set of statistics relating to the size, shape and the other 

design criteria which we may have for the final configuration. And then we try swapping 

some of the building blocks, very much like taking one of the jigsaw pieces off one small 

block, putting it onto a neighbouring block and then recalculating the statistics which 

describe our configuration and if that results in an improvement to the overall solution we 

may decide to keep that swap, whereas if it clearly results in a poorer solution we may put it 

back and try a different swap. And so we have an iterative process which is based on a highly 

computational method which goes and tries very, very, very many small swaps, evaluating 

their effect and gradually building towards a more optimal solution than the random one we 

started with. In computational turns there are various devices available to stop these kinds of 

algorithms from getting stuck in local suboptima, using methods such a simulated annealing 

or tabu searching, which are referenced in the literature.  

 

In diagrammatic terms, we can see here that what we’re doing is taking set a small building 

blocks, evaluating a set of possible solutions against some notion of which might be best and 

then adopting that best solution to create the set of tracts. Now it’s worth saying a little more 

at this point about the building blocks that we might be using. Building block zones might 

come from many different sources and in different applications they may need to be purpose-

built or they may be already in existence and they need to be small relative to the output 

zones, in the same way that jigsaw pieces would be small in relation to the elements of the 

picture.  Really, we would expect that in most contexts these are going to be zones 

themselves which have come from a geographic information system - although we do not 

need to be an expert in using geographic information systems to make use of automated zone 

design.  

 

Another important consideration is that all the statistical information which might be relevant 

to our design criteria has to be available for each of the building block zones, so if population 

size, for example, is an important consideration, we must know the population of each of the 



building blocks and there will be research situations in which this requires the use of 

confidential data in a secure setting in order to design zones for data which can subsequently 

be published once the zonation is complete - and that’s precisely how it works in the context 

of a population census and the output geography from it.  

 

So, here we take a look at some simple building blocks. In this case, I’ve used the GIS to 

generate a set of Thiessen or Voroni polygons around each of a set of address locations. The 

addresses are shown in blue. The artificial polygons they’re space-filling polygons here, are 

in red and there are some black lines which are features in this case the centrelines of the 

roads to which we’ve constrained the address polygons. 

 

In this case we may then take some additional information such as the postcodes of the 

addresses and dissolve the boundaries between each adjacent address which has got the same 

postcode and the result, as we can see here, is that a set of small polygons containing all the 

addresses with the same postcode. In this instance note that the boundaries don’t precisely 

follow the elements of the background mapping because I didn’t supply them. If we wanted 

those boundary features to follow every stream, every parcel of land, then that information 

would need to be used in the design of the building blocks. Nevertheless, what I have here is 

a set of small building block polygons from which we could begin to construct a geography at 

a higher level. So, considerations of these building blocks: well importantly, the eventual 

outputs zone boundaries are going to be drawn from the building block boundaries, so the 

outputs can’t be smoother or more realistic or better aligned to real-world features than those 

of the building blocks themselves. So, for example, if it’s important in a particular zone 

design that the street geography is reflected in the output, street geography will need to be 

reflected in the construction of the building blocks. And, in general, as the number of 

building blocks increases there will be more permutations possible, we will get longer 

computation times, but probably we’ll find that there are more solutions which meet our 

design criteria well. Conversely, if the number of building blocks is quite small and they’re 

quite large relative to the outputs it won’t take very long to compute the solution but it might 

not actually meet the criteria very well because we’ve got a lot less capacity to move things 

around and trade off the competing criteria.  

 

The zone design criteria themselves can be thought of as both those which are hard 

constraints: things which must be met, and soft constraints: which we can’t meet exactly but 

where we’re trying to maximize some continuous function. Examples of the hard constraints 

might be that every zone must contain more than one hundred people and more than forty 

households because otherwise the zone would not meet some basic confidentiality threshold. 

Similarly a geographical constraint would be that all of the zones we’re creating are not 

permitted to cross a local authority or a region boundary. Those are absolutes, and we can set 

up the zone design problem such that we will not produce solutions of any kind which violate 

those rules. But the soft constraints are much harder because, for example, we might say that 

we want zones which containe as close as possible to a hundred and twenty five households 

and it will not be possible to meet that exactly. We will find, perhaps, some large residential 

buildings themselves contain more than a hundred and twenty-five households or the area to 

be zones may not be actually a neat multiple of a hundred and twenty-five so were are only 

ever going to get close to that particular target.  

 

Similarly, we might find that for certain purposes, a constraint might be specified of the firm 

that every zone should be as compact in shape as possible, and there are different ways that 

can be measured. It is very difficult to find any configuration of real-world features which are 



highly compact. The most compact shape’s going to be something like hexagons – that’s 

going to be very unrealistic in most geographical applications using real-world data. Clearly, 

in order to implement the zone design we need a measurement metric for each of those 

criteria, so every one of the criteria needs to have some way that can be repeatedly 

recalculated as we step through that iterative movement of the building blocks and 

comparison of the swaps. So clearly we could simply disallow any zones with a population 

coming out smaller than the threshold value and say that’s not a permissible move. We could 

solve using all the building blocks within a local authority and then we will be confident that 

none of those zones have crossed the local authority boundary. But for those soft constraints 

such as meeting a target population size, we might use a measure such as minimization of the 

sum of squared differences from the target size. That would make zones which are a long 

way from the target very unattractive in the solution and we would always seek to minimize 

that aggregate squared distance across the map.  

 

Similarly, if we wanted to work on compactness of geographical areas we could, for example, 

seek to minimize the sum of the a statistic such as perimeter squared by area. A circle will be 

the shape with the smallest perimeter squared by area, and therefore we have a circularity 

index which means the shapes more like circles will be more attractive in the solution. So 

having specified a set of building blocks, and a set of design constraints, we can effectively 

run to an initial random aggregation of the building blocks and at the very first iteration we 

measure each of those constraints and then we try to go into the swapping process and 

evaluate each possible swap to see how our design constraints have been improved or perhaps 

worsened by that potential swap. Broadly speaking, we will progress by keeping the 

improving moves and rejecting the non-improving moves and eventually will create such 

tracked output areas which are the best achievable outcome, given the number of iterations 

which we’ve adopted. There isn’t any right answer to how far we should keep going, but 

what we’ll often find in these kinds of problems is that we get a rapid improvement in the 

solution which then gradually trades off until very, very many moves don’t make any further 

improvement.  

 

We have an example here of how it works using the same small map of building blocks that 

we looked at just now. And here, I have an initial random aggregation of those building 

blocks into potential tracts. There are just three of them in this map and the positions of the 

addresses and the streets are still maintained. So we have a blue potential tract on the left, 

green one on the right and a small yellow one. And we might surmise here that the yellow 

one’s probably going to be rather small if the objective was to have zones of equal population 

size. So, there’s our initial random aggregation and as we begin swapping we highlight one 

particular building block and experiment by swapping it: in this case, from the blue zone into 

the green zone and the statistics which are describing the solution are then re-evaluated. What 

we’re very likely to find in this circumstance is that the blue zone has got smaller – maybe 

that’s what we wanted – but the green zone is probably getting too large, and in addition 

those shapes are very irregular and if circularity, for example, were a metric we were using, 

this would look quite an unattractive solution and therefore we may decide at this point that’s 

not a good move and we’ll go back, we’ll reject it, back to the start. And then we’ll pick up a 

new potential swap, in this case a move from blue to yellow, and then we re-evaluate, we  

recalculate the criteria statistics and here we may see that we’ve improved both the shapes of 

the blue and the yellow: blue was too big, we’ve made it smaller; yellow was too small, 

we’ve made it bigger on population terms and this actually might be quite an attractive move 

in which case we would retain it and then proceed to another swap somewhere else in the 

map. So we’re gradually incrementing towards a more optimal solution with each iteration  



 

So, in this sense we see that the building blocks need to be available and they have a big 

impact on the final solution. Placement of their boundaries and having all the necessary data 

are preconditions for us to begin with the zonation. Building blocks may be needing to be 

constructed, for example from addresses or from small geographical – units postcodes, street 

blocks – which are appropriate to the research need. But, providing we have the data, we can 

put those building blocks into the automated design process.  We also are going to have to be 

very clear what are our intended criteria, and this usually involves a process of reflection. If 

there are users of the research, it may involve discussing with them the characteristics of an 

optimal geography: whether or not it’s important that the zones to be created nest within 

some higher units such as local government geography; whether they’re built from some 

particular elements such as the postal system and whether they are aligned with things such 

as roads, rivers which can be seen in the physical geography. And when we have those sets of 

information ready to commence with, then we can use automated zone design in order to 

progress towards our zonation solution. 
 


